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‭Abstract‬

‭Dysarthria includes dysfunction in the nerves and muscles controlling speech, leading to unclear spoken words. While‬
‭many studies have been carried out to examine speech impairment, the variation of this problem among people with a similar‬
‭dysarthria diagnosis has necessitated the need for more research in this area. The particular type and severity of the‬
‭impairment are essential to monitor the progress of dysarthria and make effective therapeutic interventions. This project‬
‭describes a Convolutional Neural Network (CNN) model for dysarthria detection, where several acoustic features are extracted‬
‭in the form of zero crossing rates, Mel Frequency Cepstral Coefficients (MFCCs), spectral centroids, and spectral roll-off. Using‬
‭the TORGO database of speech signals, training the model, and testing it for its efficiency has shown much promise in the‬
‭early diagnosis of dysarthric speech. The numerical results indicate that the model design provides an efficiency of nearly 95%,‬
‭which is higher than previous model architectures. This model aims to identify the condition early and help improve the‬
‭management of dysarthria through timely and accurate diagnosis.‬

‭Introduction‬

‭Dysarthria is a complex motor speech disorder resulting from neurological impairments that affect the muscles used in‬
‭speech production. It is characterized by slurred, slow, and unpredictable speech. Other features range from abnormally loud‬
‭or soft volumes to distorted vocal qualities. This involves a disruption of one or several subsystems, including respiration,‬
‭phonation, resonance, articulation, and prosody. Such disorders have their etiologies in various pathologies of the nervous‬
‭system and lead to a varied array of speech impairments.‬

‭The physiological bases of dysarthria are highly integrated and complicate the isolation of speech functions affected.‬
‭While respiration relies on controlled activity by the muscles in the abdomen and thorax and diaphragmatic action, phonation‬
‭relies on the laryngeal mechanisms. Similarly, resonance implicates the pharyngeal, oral musculature, soft palate, and nasal‬
‭cavities, and the movements of the tongue, jaw, and lips control articulation. Dysarthria is severe to a degree, and its nature‬
‭depends upon the site and severity of neurological insult, resulting in various forms of dysarthria: flaccid, spastic, ataxic,‬
‭hypokinetic, hyperkinetic, and mixed.‬

‭Classification of dysarthria, as well as the determination of its severity, is essential for carrying out efficient‬
‭management and therapeutic planning. This paper insists on using Convolutional Neural Networks (CNNs) and establishes‬
‭them as a more advanced tool for detecting dysarthria at an earlier stage than traditional techniques. We aim to integrate‬
‭sophisticated speech-processing techniques into neural network models to enhance patient diagnosis. The proposed‬
‭manuscript consists of the following structure. First, this paper describes the methodology for developing a CNN-based‬
‭classification model (Section 2). We present the results in Section 3, discuss the results in Section 4, and conclude with an‬
‭overview of our study and future directions in Section 5.‬
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‭The economic and health care costs that Dysarthria can cause lead to significant financial impacts for those with the‬
‭condition. A study examining the Lee Silverman Voice Treatment for Parkinson’s disease-associated dysarthria suggests that‬
‭the tool may not always be cost-effective depending on the patient’s outcome.‬

‭Proposed Methodology‬

‭Data Collection and Preparation‬
‭This study uses the Universal Access Dysarthic speech corpus and the TORGO database. These databases include‬

‭the dysarthric and non-dysarthric speech samples and their respective data from each of the male and female speakers in the‬
‭study. The speaking data comprises `.wav` files, capturing the acoustics of each subject. The sample data files and their‬
‭respective details are shown in Figure 1. The data was cleaned and modified effectively with background noises by utilizing a‬
‭Wiener filter. This effectively cleaned the data by minimizing the mean square error between the estimated random process and‬
‭the desired signal.‬

‭Data Analysis‬
‭In addition to auditory speech evaluation, several signal processing techniques were employed to analyze the speech‬

‭signals, focusing on changes in vowel formants, fundamental frequency (f0), duration of the speech signal, amplitude‬
‭variations, prolonged vowel duration, voice onset time, and variations in speech tempo. Key features extracted for analysis‬
‭included the Short-Time Fourier Transform (STFT), Mel Frequency Cepstral Coefficients (MFCC), spectral centroid, spectral‬
‭bandwidth, spectral roll-off, and zero-crossing rate. These features were extracted from both dysarthric and non-dysarthric‬
‭speech samples, with detailed feature plots for dysarthric female speakers provided in Figure 2.‬

‭Fig. 1‬‭Block schematic of methodology.‬
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‭Fig. 2‬‭Speech analysis (Type 1: Male without Dysarthria)‬‭a) Original speech b) Short-term Fourier transform (STFT) c) Spectral centroids d) Spectral‬
‭bandwidth (p = 1, p = 2, p = 3) e) Spectral roll-off  f) Mel-frequency cepstral coefficients (MFCC) spectrogram [Phrase: Thigh]‬

‭Data Pre-Processing‬
‭The preprocessing phase involved converting the unstructured audio data into numeric features and standardizing the‬

‭sample rate to 128 features per second. The audio signals were transformed into Mel Spectrograms to facilitate feature‬
‭extraction. To prepare the data for model training, the feature matrix was normalized to ensure consistency. The dysarthria‬
‭status of each speaker was encoded as a categorical variable. Subsequently, the dataset was split into 80% training data and‬
‭20% testing data.‬

‭Data Modeling‬
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‭The preprocessed data was transformed into Mel-frequency cepstral coefficients (MFCCs) extracted from each audio‬
‭file. These were then used as input into a design to identify patterns associated with Dysarthria. This input data is formatted‬
‭into the shape that matches the input layer of the model, specifically (20, 792, 1) for each audio sample, where 20 represents‬
‭the number of MFCC coefficients, and 792 represents the maximum number of frames after padding.‬

‭The first layer of the CNN contains 64 filters with a kernel size of 3 × 3 to capture basic features from the input data,‬
‭such as edges and simple speech-related textures. A kernel size, here, specifies the dimensions of the filter used in each‬
‭convolutional layer, which directly influences the input data during the process of feature extraction. The output from this layer‬
‭is batch-normalized to enable the activation normalization and increase the stability of the network. Subsequently, a‬
‭max-pooling layer with a window of size 2 × 2 reduces the spatial dimensions for all feature maps by half. This helps reduce‬
‭computational complexity and further prevents overfitting through feature abstraction. The architecture proceeds to a second‬
‭convolutional layer of 128 filters, all of size 3 × 3. This layer delves more deeply into the details of the extracted features,‬
‭learning more intricate and higher-level patterns that aid in the recognition of dysarthria. It is followed by a batch normalization‬
‭and max-pooling sequence to further refine and reduce the feature maps.‬

‭To prevent overfitting, a dropout layer with a rate of 0.3 is added after the pooling stages to make the model resistant.‬
‭Overfitting can cause the model to capture unrelated noise that is irrelevant to the detection, leading to a lower testing‬
‭accuracy. This dropout layer will randomly shut off a fraction of neurons during training, thereby strengthening the model by‬
‭making it less dependent on neuron weights. The output from the convolutional and pooling layers will be a multidimensional‬
‭tensor; this is flattened into a one-dimensional array. The flattened data feeds into a dense layer with 1024 neurons, allowing‬
‭the network to learn from the extensive feature set developed in the previous steps. A following dropout layer with a rate of 0.4‬
‭prevents overfitting and promotes generalization.‬

‭The final layer of the model contains four neurons. These represent the classes into which an individual can be‬
‭classified: dysarthric male, non-dysarthric male, dysarthric female, and nondysarthric female. This layer has a softmax‬
‭activation, providing the probability regarding every class in which it is located, where higher probabilities are more robust‬
‭predictions for each category. It uses the Adam optimizer with a learning rate of 0.0005. The learning rate is a tuning parameter‬
‭that aims to reach a minimum loss function. However, model training varies many hyperparameters to tune performance;‬
‭similarly, evaluation on another test set confirms the model's accuracy, precision, and recall.‬
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‭Fig. 3‬‭The Convolutional Neural Network Model Architecture‬

‭Fig. 4‬‭Parameters of the Convolutional Neural Network‬

‭Results‬

‭After about 20 epochs, the training accuracy began to halt from an exponential gain, transitioning to a linear increase.‬
‭It can also be observed that the training loss at around 28 epochs began to hold a linear decrease. From epoch 28 and onward,‬
‭the loss stopped its decrease and fluctuated between two and one-thousandths. The model utilized a call-back function to‬
‭terminate the training process if there was no significant or notable improvement in the loss, effectively preventing the model‬
‭from overfitting and ensuring good performance. Furthermore, after 53 epochs of training, the model yielded a training‬
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‭accuracy of 96.46% and a testing accuracy of 94.97%. This data shows that the CNN model effectively identifies the unique‬
‭features within the voice data to classify a patient with dysarthria with an accuracy rate of 94.97%.‬

‭Fig. 5‬‭Confusion Matrix‬

‭Parameters‬ ‭Test Accuracy‬ ‭Test Precision‬ ‭Test Recall‬

‭Score (%)‬ ‭94.97%‬ ‭95.28%‬ ‭95.10%‬

‭Fig. 6‬‭The Convolutionalconvolutional Neural Network’s‬‭Performance Evaluation‬

‭As shown in the confusion matrix in Figure 5, out of the 1989 audio files used, 1889 were accurately predicted, while‬
‭100 were not accurately predicted.  The testing accuracy closed the gap at 94.97% (Figure 6), proving the model's strong‬
‭ability for generalization. For individuals with dysarthria, the model effectively evaluated 950 audio files correctly. On the other‬
‭hand, it misclassified 52 audio files to be non-dysarthic. The model also accurately identified 939 non-dysarthic audio files but‬
‭missed 48 audio files, classifying them as dysarthic. A possible cause for these errors was that the audio files used short‬
‭phrases or words at times, making the speech challenging to classify.‬

‭Discussion‬

‭With continued research on this topic, the data should be based on a richer dataset with phrases that will get more‬
‭diversified in their linguistic characteristics once a proper phonetic analysis has been established. Further steps in this direction‬
‭will result in better improvements that can be transformed into increased robustness of models applicable to broad domains‬
‭such as healthcare. It is further utilized to establish the groundwork of speech models for multi-irregularities in different‬
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‭languages and dialects that can allow diagnostic precision and intervention approaches. Embedding these machine learning‬
‭models into real-time speech processing applications will revolutionize treatment approaches by giving immediate feedback‬
‭and changes at the therapy session. Such models allow improvements at the clinical level and in patients' home-care systems‬
‭and will be in this line of research. The earlier model observed had an accuracy as high as 93.97%, which‬‭,‬‭when compared to‬
‭the 94.97% accuracy presented, is less accurate.‬

‭Conclusion‬

‭Deep learning technologies are making a paradigm shift in decision support systems in medical diagnostics, including‬
‭the management of dysarthria. Our study on speech disorders,‬‭which‬‭complicate personal expression and‬‭inflict social and‬
‭psychological challenges on the affected, was managed with a diagnostic accuracy of 94.97% using convolutional neural‬
‭networks. Such precision thus refines therapeutic strategies and brings betterment to patient outcomes. Although the accuracy‬
‭rate is high, some misclassifications suggest that model improvement and further exploration of other diagnostic features‬
‭should be undertaken to assess the severity of dysarthria more accurately, guiding future research into increasing model‬
‭diagnosis capabilities and extending clinical applicability.‬
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